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Abstract

Simulation is an important tool for studying stochastic systems. A very first step of this
approach is to specify a distribution for the random input. This is called input modeling. Input
models are important because they affect simulation results and thus real decisions. However,
specifying a distribution precisely is typically difficult and even impossible in practice. The
issue is called input uncertainty in the simulation literature, which has been considered and
studied extensively in recent years. In this paper we study the input uncertainty issue when
using simulation to estimate important performance measures such as expectation, probability,
and value-at-risk. We propose a robust simulation (RS) approach, which assumes the real distri-
bution is contained in an ambiguity set constructed using statistical divergences, and estimates
the worst-case value of the performance measures when the distribution varies in the ambiguity
set. We show that the RS approach is computationally tractable and the corresponding results
reveal important information of the stochastic systems and help decision makers make better
decisions.

1 Introduction

Simulation is an important tool for studying complex stochastic systems. In a typical simulation

study, a simulation model is built to approximate the logic of the real system and to map the often

stochastic inputs to the outputs. For instance, in a financial simulation, the inputs may be the

realizations of various risk factors and the output may be the loss given the risk factors. Put it

in mathematics, we use ξ to denote the random inputs, where ξ is a k-dimensional random vector

supported on Ξ ⊂ <k, and use H(ξ) to denote the output, where H(·) is a single-valued function.

To run simulation experiments on the model, one needs to specify the distribution of ξ so that its

random realizations may be simulated. This is known as input modeling and it is often a critical

step in a simulation study.

As ξ is a random vector, the output H(ξ) is also random, which creates difficulty for decision

making. To resolve this difficulty, various performance measures have been proposed to map the

distribution of H(ξ) into a deterministic value, so that decisions may be made more easily. In this
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paper, we consider three important performance measures: expectation, probability, and value-at-

risk (VaR). Suppose that ξ follows a distribution P∗. We denote the expectation as EP∗ [H(ξ)],

where EP∗ [·] indicates that the expectation is taken with respect to (w.r.t.) the distribution P∗.

Expectation is often the first choice in simulation study, which measures the average value of the

output. Probability is another widely used measure. It measures the chance of some random event,

desired or undesired. Consider some random event A(ξ), where the randomness is introduced by

ξ. We denote the probability of A(ξ) as PrP∗ {A(ξ)} where PrP∗ {·} means the probability is taken

w.r.t. P∗. For instance, suppose the loss of a financial activity is H(ξ). Then A(ξ) := {H(ξ) ≤ v}
is the event that the loss does not exceed the given threshold v and PrP∗ {A(ξ)} is the probability

of this event. Probability is often advocated by decision makers who are risk averse. Value-at-

risk (VaR), as a risk measure, was proposed in 1990s, and has been considered as a standard

risk management tool in the financial industry. Mathematically, VaR is the quantile of a loss

distribution. For a given confidence level β ∈ (0, 1), the (1−β)-VaR of a random loss H(ξ) is defined

as VaR1−β,P∗(H(ξ)) := inf {v ∈ < : PrP∗ {H(ξ) ≤ v} ≥ 1− β}, where, similarly, the subscript P∗
denotes that the VaR is calculated when ξ follows P∗. For a thorough introduction and treatment

of VaR, readers are referred to Jorion (2006) and Hong et al. (2014a).

It is clear that the values of all three performance measures critically depend on the true

distribution P∗. However, in practical situations, P∗ is typically difficult to be specified precisely.

When there are data, one can specify the distribution via some statistical methods, which often

contain estimation errors. When there are no data, one can specify a distribution subjectively based

on some practical knowledge of the inputs, which is rarely perfect and leads to uncertainty as well.

However, the uncertainty in the input distributions affects directly the quality of the estimated

performance measures, and thus may lead to incorrect or inappropriate decisions. This issue is

known as “input uncertainty” in the simulation literature.

Input uncertainty has for long been considered as a fundamental issue in simulation studies.

According to Barton (2012), there already existed systematic discussions on this issue in the 1992

Winter Simulation Conference. Since then, a number of approaches have been developed and ap-

plied to handle the issue, including the resampling method, Bayesian approach, and approximation

approach, among others (see Barton 2012). The literature on resampling approach includes Bar-

ton and Schruben (1993, 2001), Freimer and Schruben (2002) and many others, the literature on

Bayesian approach includes Chick (1997, 2001), Zouaoui and Wilson (2004), and Biller and Corlu

(2011)), and the literature on approximation approach includes Cheng and Holland (1997) and Ng

and Chick (2006). In recent years, metamodeling techniques, such as stochastic kriging, have been

incorporated in various approaches to make them easier to use (see, for instance, Barton et al.

(2014) and Xie et al. (2014)). For a broader and deeper review of the study on input uncertainty,

we refer the readers to Henderson (2003), Barton (2012), Barton et al. (2014), Xie et al. (2014)
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and references therein.

In this paper, we follow the convention of the economics literature (see, e.g., Ellsberg (1961)

and Epstein (1999)) and use the term “ambiguity” to denote the phenomenon that a distribution

cannot be fully specified. In contrast to the existing literature, we propose a robust simulation

(RS) approach to handling input uncertainty. The RS approach models the input uncertainty by

constraining the distribution in an ambiguity set and then estimates the worst-case value of the

performance measure when the distribution varies in the ambiguity set. The size of the ambiguity set

reflects the decision maker’s knowledge of the input distribution. It can be some confidence region

of the real distribution constructed from data or some subjective set reflecting the decision maker’s

understanding of the uncertainty. The use of a robust approach when facing ambiguity is consistent

to the concept of “ambiguity aversion” documented in the economics literature. For instance,

Ellsberg (1961) pointed out, when facing ambiguity, it is reasonable for a conservative person to

consider the worst-case scenario, and Epstein (1999) provided empirical evidence to support the

argument. The use of worst-case analysis when facing ambiguity is a common approach adopted

by some other fields as well. In financial risk management, for instance, Artzner et al. (1999)

proposed the notion of coherent risk measure that is defined as the worst-case mean performance

in an ambiguity set. In optimization, the distributionally robust optimization approach is used to

handle the uncertainty in optimization models, see, e.g., Delage and Ye (2010) and Ben-Tal et al.

(2013).

The concept of RS used in this paper, i.e., applying a worst-case analysis on a simulation

model within an ambiguity set, was also used by Hu et al. (2012) who considered the input

uncertainty in environmental policy simulation. They suggested estimating the worst-case values

of the performance measures of different environmental policies and selecting the policy with the

best worst-case performance. Fan et al. (2013) extended the concept to robust simulation ranking

and selection, which selects the alternative with the best worst-case mean performance from a

group of alternatives. However, to model the input uncertainty, they only considered a finite

number of scenarios of the input distributions. Other concepts of robustness have also been used in

simulation studies. For instance, Sanchez (2000) and Pierreval and Durieux-Paris (2007) considered

robust design in simulation studies, and Dellino et al. (2012) considered robustness in simulation

optimization. All these authors used the term “robustness” according to Taguchi’s view on input

uncertainty.

An important issue in RS is how to specify an ambiguity set. In a practical simulation study,

the true input distribution P∗ is typically unknown, and we often specify a nominal distribution P0,

by either statistical fitting methods or subjective choice. Then, a natural approach to quantifying

ambiguity is to consider some level of perturbation or deviation from the nominal distribution.

This motivates us to model the distribution ambiguity based on the likelihood ratio (LR) function
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of the true and nominal distributions. We consider two classes of constraints imposed on the LR

function: band constraints and φ-divergence constraints. The band constraints define a uniform

band of the LR function, and the φ-divergence constraints require the φ-divergence between the

true and nominal distributions (which is the expectation of a convex function of the LR) be no

more than a positive constant. Notice that φ-divergence is an important class of distance measures

between two distributions. It includes the widely used Kullback-Leibler (KL) divergence, χ2-

distance, Hellinger distance, Variation distance, Burg entropy, and many others. The concept of

φ-divergence was introduced systematically by Pardo (2006), and was used by Ben-Tal et al. (2013)

to model distribution ambiguity in the context of distributionally robust optimization. Our work

was inspired by the sequence of papers, including Ben-Tal and Teboulle (2007), Ben-Tal et al.

(2010) and Ben-Tal et al. (2013).

The major advantage for using LR constraints in modeling ambiguity set is its mathematical

tractability. Given this type of ambiguity sets, using the duality theory, the RS problems may be

reformulated into convex optimization problems for all three types of performance measures, i.e.,

expectation, probability and VaR. Another natural way of modeling ambiguity set is to specify a

distribution family and to constrain the parameters. Hu et al. (2012) used this approach. However,

the resulted optimization problems are in general non-convex and the variance of the performance

estimators may be enlarged by the change-of-measure technique that is used to handle the LR

function. When using our approach, however, the resulted optimization problems are convex and

solvable using typical stochastic programming techniques, and the variance induced by the LR

can be handled more efficiently. Actually, as will be seen, our approach absorbs the LR term and

estimation of LR is no longer required.

Even though the RS approach needs only to find the worst-case performance in the ambiguity

set, it can be used to find the best-case performance as well. Then, the interval formed by the

best and worst values reveals how the uncertainty of the input distribution leads to the uncertainty

of the output performance measure. It contains important information even for decision makers

who are not ambiguity averse. For instance, a decision maker may look at the difference between

the worst (or best) performance and the nominal performance to understand the potential loss (or

gain) caused by the input uncertainty and make decisions based on it (or even decide to collect

more input data to reduce the input uncertainty). Moreover, if the ambiguity set is a 1 − α

confidence region of the input distribution, then the interval is also a 1 − α confidence interval

of the performance measure without considering the simulation error. Note that the simulation

error is typically controllable by setting the simulation effort. In this paper, we do not consider

the simulation error, and our analysis is focused on the input error, i.e., error caused by input

uncertainty.

The RS approach proposed in our paper has a major limitation. Our convex reformulations
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of the RS problems can only be applied to static simulation models where only one observation

of the input distribution is needed to run the simulation. For instance, the risk of a portfolio

depends on the realization of the risk factors at the end of the time horizon, or the atmosphere

carbon dioxide concentration depends on the realization of the environment parameters in the

DICE environmental simulation model (Hu et al. 2012). However, our reformulation cannot be

applied to dynamic simulation models where multiple independent observations from the same

uncertain input distribution are needed to run the simulation. For instance, in queueing models,

to simulate a sample path, a sequence of independent and identically distributed (i.i.d.) random

observations needs to be generated from the same uncertain service-time distribution. Our approach

has difficulty in handling this situation because the LR function is more complicated. However,

the general concept of RS is still applicable to this situation. Recently, Lam (2012) developed an

asymptotic expansion of the worst-case mean performance based on the upper bound of the KL

divergence in the ambiguity set, and his approach applies to dynamic simulation models. It might

be possible to connect his result to the RS formulation in the case of dynamic simulation models.

We propose it for future research.

The rest of this paper is organized as follows. In Section 2, we discuss the concept of RS. In

Sections 3 to 5, we consider RS of expectation, probability and VaR respectively. In Section 6 we

discuss how to specify the ambiguity set in real situations. Several examples are studied in Section

7. The paper is concluded in Section 8, with the proofs in Appendix.

2 Robust Simulation Formulation

To introduce the formulation of RS, we consider the expectation performance measure. Suppose

that the true input distribution P∗ is known. Then, the performance measure that we are interested

in is µP∗ = EP∗ [H(ξ)], which may be estimated using a typical sample-mean estimator µ̂P∗ , i.e.,

µ̂P∗ =
1
N

N∑

i=1

H(ξi), (1)

where {ξ1, · · · , ξN} is an i.i.d. sample of ξ generated from the distribution P∗. It is worthwhile noting

that H(·) typically has no closed-form expression and its structural information (e.g., convexitiy or

even monotonicity) is rarely known to the simulation modelers. By the strong law of large numbers

(Durrett 2005), we have µ̂P∗ → µ with probability 1 as N →∞.

In a simulation study, the true input distribution P∗ is typically unknown. We select (or

estimate) a nominal distribution P0 to approximate P∗ and use µP0 = EP0 [H(ξ)] to approximate

µP∗ . Then, an i.i.d. sample of {ξ1, · · · , ξN} is generated from the distribution P0 and µP0 is

estimated by

µ̂P0 =
1
N

N∑

i=1

H(ξi). (2)
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It is important to note that, even though the right-hand sides of Equations (1) and (2) are the

same, the observations {ξ1, · · · , ξN} are generated from different distributions. Then, we often use

µ̂P0 to approximate µP∗ . In this case, however, we introduce an approximation error that cannot

be removed by increasing the sample size N , i.e., as N → ∞, µ̂P0 converges to µP0 but not µP∗ .

This is known as input uncertainty in the simulation literature.

In this paper, we suppose that the simulation modelers (or the decision makers) may provide a

set P, called an ambiguity set, so that P∗ ∈ P (or at least P∗ ∈ P with a high level of confidence).

Let µP = EP [H(ξ)] be the expected performance under the input distribution P . Then, the RS

approach suggests to estimate the worst-case µP when P ∈ P. Without loss of generality, we

suppose that a small µP∗ is desirable, e.g., it may denote the average cost or average loss. Then,

we may formulate the RS problem as the following optimization problem:

maximize
P∈P

EP [H(ξ)]. (3)

If a large µP∗ is desirable, then the RS approach needs to find infP∈P EP [H(ξ)], which equals to

− supP∈P EP [−H(ξ)]. Therefore, we may reformulate the problem in the form of (3) by adding a

negative sign to H(ξ). It is also worthwhile noting that, if P is a 1 − α confidence set of P∗, the

interval [infP∈P µP , supP∈P µP ] is also a 1− α confidence interval of µP∗ .

2.1 A Change-of-Measure Reformulation

To solve the optimization problem (3) is not easy. The major difficulty is that there is no closed-

form expression of H(·) and almost no structural information of it either. This makes RS problems

drastically different from robust optimization problems, where the objective function has not only

a closed-form expression but also various structural properties, e.g., linear, convex quadratic etc.

Another difficulty is that, to evaluate EP [H(ξ)], one has to specify an input distribution so that

H(ξ) may be observed. Therefore, it is not easy to separate the optimization process and the

simulation process. One way to resolve these difficulties is to use a simulation optimization algo-

rithm (e.g., a stochastic approximation algorithm or a random search algorithm). However, these

algorithms require simulating EP [H(ξ)] at different choices of P and they typically have a slow rate

of convergence.

To resolve these difficulties in a different way, note that we may write

µP = EP [H(ξ)] =
∫

Ξ
H(z)dP (z) =

∫

Ξ
H(z)

dP (z)
dP0(z)

dP0(z) = EP0 [H(ξ)LP (ξ)], (4)

where LP (z) = dP (z)/dP0(z) is known as the likelihood ratio (LR) in the simulation literature,

as long as the distribution P is absolutely continuous w.r.t. P0, i.e., for every measurable set

A, P0(A) = 0 implies P (A) = 0. Notice that, in the right-hand side of the last equality of

Equation (4), the expectation is taken with respect to P0. Therefore, we may use an i.i.d. sample
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{ξ1, · · · , ξN} generated from the input distribution P0 to simulate a sample of H(ξ), denoted by

{H(ξ1), · · · ,H(ξN )}, and to calculate a sample of LP (ξ), denoted by {LP (ξ1), · · · , LP (ξN )}, for

any P ∈ P. Then, µP may be estimated by

µ̂P =
1
N

N∑

i=1

H(ξi)LP (ξi). (5)

This is a critical step in the RS formulation because the observations {H(ξ1), · · · ,H(ξN )} are now

constants so they no longer change w.r.t. the input distribution P . Therefore, the unavailability

of the closed-form expression of H(·) is no longer important. Moreover, in practice, a robust study

is typically used as a supplement to, instead of a replacement of, the nominal study. Therefore,

a sample of {H(ξ1), · · · ,H(ξN )} is typically available under the nominal input distribution P0.

Therefore, Equation (5) allows the estimation of µP for any P ∈ P without running additional

simulation experiments.

2.2 Modeling Ambiguity Set

There are generally two approaches to modeling the ambiguity set P in Problem (3), a parametric

one and a nonparametric one. The parametric approach first specifies the distribution family of

the input distribution and then specifies a set for the parameters of the distribution. Such an

approach is very natural and quite appealing. It reduces the infinite dimensional optimization

problem (searching for the extreme distribution among an ambiguity set) to a finite dimensional

optimization problem (searching for the extreme parameters among the specified set). Applying

the LR method for the parametric case, we can convert the RS problem to a stochastic optimization

(SO) problem with real-valued decision variables. This approach was adopted by Hu et al. (2012)

in modeling the uncertainty in the mean vector and covariance matrix of a multivariate normal

distribution. However, two issues arise when using this approach. The first is that the objective

function of Problem (3) may be non-concave, and the second is that the LR will affect the variance

of the estimator and thus the efficiency of simulation.

To understand these two issues, we consider a special case where ξ follows an exponential

family distribution. By Casella and Berger (2002), its distribution function (i.e., mass function if

ξ is discrete and density function if ξ is continuous) may be written as

pθ(z) = h(z)c(θ) exp

{
k∑

i=1

wi(θ)ti(z)

}
,

where θ is the uncertain parameter. For instance, if ξ follows an exponential distribution with rate

θ, then

pθ(z) = θ exp{−θz},
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and if ξ follows a k-dimensional multivariate normal (MVN) distribution with mean vector µ and

covariance matrix Σ (and the precision matrix Ω = Σ−1), then

pµ,Ω(z) = (2π)−k/2|Ω|1/2 exp
{
−1

2
(z − µ)TΩ(z − µ)

}
.

Therefore, for an exponential family distribution, the LR function may be written as

LP (z) =
pθ(z)
pθ0(z)

=
c(θ)
c(θ0)

exp

{
k∑

i=1

ti(z) [wi(θ)− wi(θ0)]

}
.

Now we look at the first issue, i.e., Problem (3) may be non-concave. Notice that many of the

exponential family distributions are quasi-concave in θ, and so do the LR functions. For instance,

if ξ follows an exponential distribution, it is easy to see that

log pθ(z) = −θz + log θ,

which is concave in θ. Then, pθ(z) and LP (z) is log-concave, thus quasi-concave, in θ. If ξ follows

a MVN distribution, then

log pµ,Ω(z) = −k

2
log(2π)− 1

2
(z − µ)TΩ(z − µ) +

1
2

log |Ω|.

Then, pµ,Ω(z) as well as LP (z) are both log-concave, thus quasi-concave, in µ and in Ω. However,

it is known that the sum of quasi-concave functions are in general not quasi-concave (Boyd and

Vandenberghe 2004). Therefore, µP = EP0 [H(ξ)LP (ξ)] is in general not a quasi-concave function

of θ even if H(ξ) ≥ 0 for all ξ. Therefore, Problem (3) is in general a non-convex optimization

problem and this creates difficulty in solving the problem. For instance, the optimization algorithm

of Hu et al. (2012) only guarantees to find a local optimal solution instead of a global optimal one.

However, the concept of robustness in Problem (3) is no longer clear enough if the local optimal

solution is not global optimal.

Now we look at the second issue, i.e., the variance of µ̂P will be affected by the LR. The

change-of-measure approach used in this paper has also been used in simulation studies to conduct

importance sampling (IS) to reduce the variance of the estimators. Even though a carefully designed

IS scheme may be very helpful in variance reduction, it is well known that a careless use of the

approach may increase the variance or even lead to an infinite variance (Law and Kelton 2000).

When using the change-of-measure approach in RS with a parametric modeling of the ambiguity,

we encounter this problem as well. To illustrate the issue, we examine EP0

[
L2

p(ξ)
]
. Under the

exponential family of distributions,

EP0

[
L2

p(ξ)
]

= EP0

[(
dP (ξ)
dP0(ξ)

)2
]

=
c2(θ)
c(θ0)

∫

Ξ
exp

{
k∑

i=1

ti(z) [2wi(θ)− wi(θ0)]

}
dz.
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Then it is clear that, when Ξ is unbounded above, ti(z) is a non-negative polynomial function of z

and 2wi(θ)−wi(θ0) > 0, EP0

[
L2

p(ξ)
]

= ∞. For instance, when ξ follows an exponential distribution,

EP0

[
L2

p(ξ)
]

= ∞ if θ < 1
2θ0, and when ξ follows a single-variate normal distribution with a fixed

mean µ but an uncertain variance σ2, then EP0

[
L2

p(ξ)
]

= ∞ if σ2 > 2σ2
0. These results suggest

that when implementing the LR method, one needs to select a “good” distribution as the sampling

distribution to avoid the variance blow up phenomenon. However, even a good distribution is

chosen, it can not be avoided that the LR will introduce extra variance during simulation.

Both of these issues are not easily solvable. Therefore, in this paper, we suggest to use a

nonparametric approach that builds an ambiguity set directly on the LR function in the respective

functional space. We show in the rest of this paper that the resulted optimization problem is convex

no matter what is the sign of H(ξ) and we can avoid estimating the LR in simulation. Notice that,

by the definition of the LR function, it is a good candidate for measuring the perturbation/deviation

of the true distribution to the nominal one. In this paper, we use two different classes of constraints

on the LR to model the ambiguity. The first is called band constraints. Specifically, we consider a

convex function ϕ : < → <, and construct the constraint

ϕ(L) ≤ ρ, (6)

where ρ is a positive constant. To guarantee that the nominal distribution satisfies (6), we impose

the regularity condition for ϕ that ϕ(1) ≤ ρ. Because ϕ is convex and finite valued, the constraint

(6) defines a closed interval for L. Furthermore, a finite number of constraints taking the form of

(6) still define a closed interval. Therefore, using the band constraints we are arriving at a set of

p such that the LR falls in an interval, i.e., a ≤ L ≤ b for some 0 ≤ a < 1 < b ≤ ∞ (We omit the

degenerate case where a = 1 = b). Although L is itself a function of ξ, (6) requires the constraint

be satisfied for all ξ.

The second class is called φ-divergence constraints. Specifically, consider a convex function φ on

< and construct the constraint EP0 [φ(L)] ≤ η. Imposing some minor regularity conditions on φ, we

are arriving at the famous φ-divergence, which has been used frequently in statistics to measure the

distance of a distribution to another one. Therefore, imposing constraints on the LR function using

φ-divergence admits a clear statistical and practical meaning. Following the definition of Pardo

(2006) and Ben-Tal et al. (2013), a φ-divergence function is a convex function for t > 0, satisfying

φ(1) = 0, 0φ(a/0) := a limt→∞ φ(t)/t for a > 0, and 0φ(0/0) := 0. For P and P0 introduced above,

the φ-divergence from P to P0 is defined as

Dφ(P‖P0) =
∫

Ξ
p0(z)φ

(
p(z)
p0(z)

)
dz = EP0

[
φ

(
p(ξ)
p0(ξ)

)]
= EP0 [φ (L)] . (7)

Similarly, we may understand the integral in (7) as the summation if P0 is a discrete distribution,

and as a mixture of integral and summation if P0 is a mixed distribution. It can be shown that
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D(P‖P0) ≥ 0 and the equality holds if and only if p(z) = p0(z) almost surely (a.s.) under P0.

We now construct a neighborhood Dφ(P ||P0) ≤ η, which from (7) yields a φ-divergence constraint

EP0 [φ (L)] ≤ η. As can be seen, instead of requiring L satisfy a constraint for all ξ in band

constraints, in φ-divergence constraints, one only requires L satisfy a constraint on average.

Combining the two classes of constraints, we construct the following ambiguity set of P in terms

of the LR function L:

L = {L ∈ L(a, b) : EP0 [L] = 1,EP0 [φi (L)] ≤ ηi, i = 1, · · · ,m} , (8)

where L(a, b) := {L : a ≤ L ≤ b a.s.}, and the constants a, b and ηi, i = 1, 2, · · · ,m are indexes of

ambiguity that control the size of L. In what follows, we discuss how to conduct RS for different

performance measures with the ambiguity set L.

3 Expectation Performance Measure

We start from the expectation performance measure. Suppose the random output of the system

that we are interested in is H(ξ). For simplicity of the notation, we suppress the dependence of H

on ξ. Based on the discussion in Section 2, we may formulate the RS problem (3) as

maximize
L∈L

EP0 [HL] , (9)

where L is defined in Equation (8). We can then rewrite Problem (9) as

maximize
L∈L(a,b)

EP0 [HL] (10)

subject to EP0 [φi (L)] ≤ ηi, i = 1, · · · ,m, EP0 [L] = 1.

Problem (10) is a functional optimization problem with L being the decision variable. It is not

difficult to verify that (10) is a convex optimization problem. One standard approach to handling

such constrained functional optimization problem is to use the Lagrangian duality, see, for instance,

Ben-Tal et al. (2010). We construct the Lagrangian functional associated with Problem (10):

`0(λ, α, L) := EP0 [HL]−
m∑

i=1

αi (EP0 [φi (L)]− ηi) + λ (EP0 [L]− 1)

= EP0

[
(H + λ) L−

m∑

i=1

αiφi (L)

]
+

m∑

i=1

αiηi − λ.

Then Problem (10) is equivalent to

maximize
L∈L(a,b)

minimize
λ∈<,α≥0

`0(λ, α, L). (11)
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Interchanging the maximum and minimum in Problem (11), we obtain the Lagrangian dual of

Problem (11):

minimize
λ∈<,α≥0

maximize
L∈L(a,b)

`0(λ, α, L). (12)

The major concern about the primal and dual problems above are whether they have the same

optimal value. Fortunately, the duality gap turns out to be zero. We summarize the result in the

following theorem, whose proof can be found in Appendix.

Theorem 1. The optimal values of Problems (11) and (12) are equal. The optimal value of Problem

(12) is attained at some λ∗ ∈ < and α∗ ≥ 0.

Theorem 1 guarantees that, to solve (11) it suffices to solve (12). Let v(λ, α) denote the optimal

value of the inner maximization problem of (12), i.e.,

v(λ, α) = sup
L∈L(a,b)

`0(λ, α, L).

The following proposition states that we can put the supremum into the expectation in the expres-

sion of v(λ, α). The proof of Proposition 1 is included in Appendix.

Proposition 1. For any λ ∈ <, α ≥ 0,

v(λ, α) = EP0

[
sup

L∈L(a,b)

{
(H + λ) L−

m∑

i=1

αiφi (L)

}]
+

m∑

i=1

αiηi − λ. (13)

To simplify v(λ, α), we define an auxiliary function

Ψ(s, α) = sup
t∈L(a,b)

{
st−

m∑

i=1

αiφi (t)

}
. (14)

It is not difficult to see that Ψ(s, α) is a well defined deterministic function. Moreover, we have the

following proposition, whose proof is included in Appendix.

Proposition 2. Ψ(s, α) is convex in (s, α) and non-decreasing in s, and it satisfies Ψ(s, α) ≥ s.

Proposition 2 summarizes important properties of Ψ(s, α). We will frequently refer to this

proposition in the following analysis. With the theory built above, it is easy to prove the following

theorem, which summarizes the main result on RS of expectations.

Theorem 2. The optimal value of Problem (9) is equal to that of the following problem

minimize
λ∈<,α≥0

EP0 [Ψ(H + λ, α)] +
m∑

i=1

αiηi − λ. (15)
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Remark 1. The strong duality between (11) and (12) allows us to transform the RS problem to its

dual. However, it is possible that the optimal values of both problems are infinite. If the random

output H is bounded or b < ∞, the optimal values are finite and in such a case we can use any φ-

divergence. Nevertheless, when H is unbounded (e.g., it follows a normal distribution) and b = ∞,

the optimal values may be infinite. In this case one needs to select an appropriate φ-divergence

such that the RS problem has a finite optimal value. This phenomenon, from another angle, shows

that different φ-divergences may constrain the distribution in different manners (e.g., in different

aspects of constraining the tail of the distribution). One of the merits of introducing the uniform

bound [a, b] is that it makes the RS problem always meaningful, no matter what φ-divergence we

use. A more detailed discussion on this issue can be found in the last paragraph of Section 3.1.1.

Compared to (9), (15) becomes much more specific, as the expectation is now taken w.r.t. an

explicit distribution, i.e., the nominal distribution P0. Moreover, Proposition 2 guarantees that the

problem is a convex optimization problem. Therefore, (15) is much easier to solve than the original

functional optimization problem. Next, we discuss how to solve Problem (15).

3.1 Solution Methods

Various techniques have been developed for SO problems. Among them the sample average approx-

imation (SAA) method and the stochastic approximation (SA) method are widely used, see, e.g.,

Shapiro et al. (2014). The idea of SAA is to approximate the SO problem by a deterministic sample

problem and then implement deterministic optimization techniques to solve the sample problem.

The SA method mimics the steepest decent (ascent) method and iteratively updates the solution

based on the sample taken at each iteration. Both methods have their advantages/disadvantages

and applicability.

The difficulty of Problem (15) depends on the function Ψ(·, ·). If the expression of Ψ(·, ·) can be

derived analytically, then SAA may be directly applied. When a closed form of Ψ(·, ·) is unavailable,

it becomes difficult to apply SAA, and in such circumstance SA is often a better choice. In this

subsection, we first show that, for the ambiguity set defined by only one divergence, we can usually

obtain the closed-form expression for Ψ(·, ·). For this class, we use SAA to solve it. For the general

case, we suggest using SA algorithms.

3.1.1 Sample Average Approximation

Suppose {ξ1, ξ2, · · · , ξN} is an i.i.d. sample generated from P0. SAA suggests using the following

sample problem

minimize
λ∈<,α≥0

1
N

N∑

j=1

Ψ(H(ξj) + λ, α) + αη − λ (16)

12



Table 1: Some φ-Divergence Functions and Their Conjugates

Divergence φ(t), t ≥ 0 φ∗(s)
Kullback-Leibler t log t− t + 1 es − 1

Burg entropy − log t + t− 1 − log(1− s), s < 1
J-divergence (t− 1) log t No closed form

χ2-distance (t− 1)2
{ −1 s < −2

s + s2/4 s ≥ −2
Neyman χ2-distance (t−1)2

t 2− 2
√

1− s, s ≤ 1
Hellinger distance (

√
t− 1)2 s

1−s , s < 1

χ-distance of order θ > 1 |t− 1|θ
{ −1 s < −θ

s + (θ − 1)
(
|s|
θ

)θ/(θ−1)

s ≥ −θ

Variation distance |t− 1|
{ −1 s < −1

s −1 ≤ s ≤ 1

Cressie-Read tθ−θt+θ−1
θ(θ−1) , θ 6= 0, 1

{ −1/θ (θ − 1) s + 1 < 0
1
θ (1− s (1− θ))θ/(θ−1) − 1

θ (θ − 1) s + 1 ≥ 0

to approximate (15). With some regularity conditions on Ψ(·, ·), the optimal solutions and optimal

value of (16) converge to those of (15) as N → ∞. We refer readers to Shapiro et al. (2014) for

details.

Note that the implementation of SAA relies on efficient solution methods for the sample problem

(16). Consider the following special case of L:

Lφ = {L ∈ L(0,+∞) : EP0 [L] = 1,EP0 [φ (L)] ≤ η} . (17)

Then Lφ contains the distributions whose distance (measured by φ) to the nominal distribution

P0 is within a constant η. Note that Lφ is often the most natural choice of L in practice. Let

φ∗(s) = supt≥0 {st− φ (t)}. It is the conjugate of the φ-divergence. Table 1, extracted from Ben-

Tal et al. (2013), summarizes the conjugates of various φ-divergence measures.

For the ambiguity set Lφ, by Equation (14),

Ψ(s, α) = sup
t≥0

{st− αφ (t)} = αφ∗
( s

α

)
.

Then, Problem (15) takes the following form

minimize
λ∈<,α≥0

EP0

[
αφ∗

(
H(ξ) + λ

α

)]
+ αη − λ, (18)

with the sample problem being

minimize
λ∈<,α≥0

1
N

N∑

j=1

αφ∗
(

H(ξj) + λ

α

)
+ αη − λ. (19)

From Table 1, we see that, for most of the divergences, the conjugate function φ∗ has a closed-form

expression. In these cases, we can design efficient procedures to solve the deterministic convex
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sample problem (19). To illustrate this, we consider two examples, KL divergence and χ2-distance,

both of which are widely-used statistical distance measures.

Example 3.1. For KL divergence, Problem (18) becomes

minimize
λ∈<,α≥0

EP0

[
α exp

{
H(ξ) + λ

α

}]
+ α (η − 1)− λ,

and the corresponding sample problem becomes

minimize
λ∈<,α≥0

1
N

N∑

j=1

α exp
{

H(ξj) + λ

α

}
+ α(η − 1)− λ.

By introducing auxiliary decision variables zj , j = 1, · · · , N , we can convert the problem to

minimize
1
N

N∑

j=1

zj + α(η − 1)− λ

subject to α exp
{

H(ξj) + λ

α

}
≤ zj , zj ∈ <, j = 1, · · · , N, λ ∈ <, α ≥ 0.

This is a perspective-of-exponential program and can be solved efficiently by CVX, a software package

for convex optimization (Grant and Boyd 2013).

Example 3.2. For χ2-distance, Problem (18) takes the following form

minimize
λ∈<,α≥0

1
4α

EP0

[(
[H + λ + 2α]+

)2
]

+ α(η − 1)− λ,

where [z]+ = max{z, 0}. The corresponding sample problem takes the following form

minimize
λ∈<,α≥0

1
N

N∑

j=1

1
4α

(
[H(ξj) + λ + 2α]+

)2
+ α(η − 1)− λ.

By introducing auxiliary decision variables zj , j = 1, · · · , N , we can reformulate the problem as

minimize
1
N

N∑

j=1

z2
j

4α
+ α(η − 1)− λ

subject to H(ξj) + λ + 2α ≤ zj , zj ≥ 0, j = 1, · · · , N, λ ∈ <, α ≥ 0.

This is a sum-of-quadratic-over-linear program, which can also be solved efficiently by CVX (Grant

and Boyd 2013).

Comparing the KL divergence with the χ2-distance, we find that the KL divergence requires

the existence of the moment generating function of the random variable H, whereas the χ2-distance

only requires the existence of the second moment of H. Thus in terms of modeling, χ2-distance is

less restrictive than KL divergence. Now we discuss further the issue raised in Remark 1 using the
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φ-divergence examples in Table 1. For a function f defined on <, let domf = {s : f(s) < +∞},
which is called the effective domain of f . From Table 1 we can find that for some conjugate

functions, the effective domain is <, but for others, the effective domain is only a proper subset of

<. Consider Problem (18). Let Hu be the essential supremum of H(ξ) under measure P0, i.e.,

Hu = inf {t ∈ < : PrP0 {H(ξ) > t} = 0} .

If H is unbounded from above, then Hu = +∞. In this case, suppose domφ∗ is only a proper

subset of <. Then for any α and λ, the objective in (18) is +∞. This shows that using such

φ-divergence always leads to a +∞ worst case. Therefore, for the unbounded case, we need to use

those φ-divergences for which domφ∗ = <. As can be seen, for the most widely used KL divergence

and χ2-distance, domφ∗ = <. Furthermore, for the class of χ-distance of order θ > 1 and the

class of Cressie-Read divergence, the conjugates also have effective domain <. This suggests the

decision makers have abundant choices. If decision makers want to use those φ-divergences for

which domφ∗ 6= <, they may have to impose certain finite bounds a and b on L. However, this

usually results in situations where a closed-form expression of Ψ(·, ·) is difficult to derive.

3.1.2 Stochastic Approximation

One of the merits of SA, compared to SAA, is that it does not require a closed-form expression of

Ψ(·, ·). Therefore, when it is difficult to derive the expression of Ψ(·, ·), we often resort to SA. There

have been numerous SA procedures in the literature. In this paper, we suggest using the robust

stochastic approximation (RSA) procedure proposed by Nemirovski et al. (2009) to solve (15). To

describe the procedure, we introduce some notation for (15). Let x = (λ, α) denote the decision

vector. Suppose Θ is a compact set that includes the optimal solution, and G(x, ξ) is the stochastic

subgradient of the objective function. Let ΠΘ(x) denote the projection of x onto Θ. Suppose the

number of allowed iterations is N . The RSA procedure is as follows (in the form of Ghadimi and

Lan (2015)).

Robust Stochastic Approximation (RSA)

Step 0. Let x0 ∈ Θ be given.

Step k. For k = 0, 1, · · · , N − 1, generate ξk, and set xk+1 = ΠΘ (xk − γkG(xk, ξk)) for some

γk ∈ (0,+∞).

Output: x̄N =
∑N

k=1 γkxk∑N
k=1 γk

.

To implement RSA, we need to provide the step size γk and the stochastic subgradient G(xk, ξk).

Nemirovski et al. (2009) suggest several choices for γk given N . Suppose st − ∑m
i=1 αiφi (t) is

strictly convex in t, which is often guaranteed by the strict convexity of φi. Then, there is a unique
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optimal solution t∗ for (14). It follows from Danskin Theorem (Shapiro et al. 2014) that Ψ(s, α) is

differentiable and

∇Ψ(s, α) = ∇
{

st−
m∑

i=1

αiφi (t)

}∣∣∣∣∣
t=t∗

.

The stochastic subgradient G(x, ξ) then becomes a stochastic gradient and can be computed ac-

cordingly. For further properties (e.g., convergence) and implementations of RSA, we refer the

readers to Nemirovski et al. (2009).

4 Probability Performance Measure

We next consider the probability performance measure. Suppose A(ξ) is the set of events of

concern. Depending on it is the set of events that are desirable or undesirable, RS considers one of

the following quantities,

Pl := inf
P∈P

PrP {A(ξ)} and Pu := sup
P∈P

PrP {A(ξ)} .

Let Ac(ξ) denote the compliment of the set A(ξ). Then,

inf
P∈P

PrP {A(ξ)} = inf
P∈P

1− PrP {Ac(ξ)} = 1− sup
P∈P

PrP {Ac(ξ)} . (20)

The relation suggests it suffices to consider either the supremum or the infimum. In what follows

we focus on Pu.

Let 1{A(ξ)} denote the indicator function, which equals 1 if A(ξ) happens and 0 otherwise. Then

PrP {A(ξ)} can be rewritten as EP

[
1{A(ξ)}

]
. For simplicity of notation, we abbreviate 1{A(ξ)} by

1. Furthermore, we consider the ambiguity set L defined in Equation (8). Then, Pu corresponds

to the following optimization problem

maximize
L∈L

EP0 [1L] , (21)

which may be placed within the framework of RS of expectations studied in Section 3.

To simplify the notation, we let κ = PrP0 {A(ξ)}. It is the probability of A(ξ) under the nominal

distribution P0. Note that when H = 1,

EP0 [Ψ(H + λ, α)] = Ψ(1 + λ, α)κ + Ψ(λ, α) (1− κ) .

Then, by Theorem 2, we obtain the following result on Problem (21).

Theorem 3. The optimal value of Problem (21) (i.e., Pu) is equal to that of the following problem

minimize
λ∈<,α≥0

Ψ(1 + λ, α)κ + Ψ(λ, α) (1− κ) +
m∑

i=1

αiηi − λ.
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Theorem 3 builds that the maximal probability is equal to the optimal value of an optimiza-

tion problem with real decision variables. It clearly shows that estimating the maximum of the

probability can be accomplished by estimating the probability under the nominal distribution and

by solving a simple optimization problem. Now we discuss in detail how to solve the problem. To

unify the analysis, we define for each y ∈ [0, 1],

Z(λ, α, y) := yΨ(1 + λ, α) + (1− y)Ψ(λ, α) +
m∑

i=1

αiηi − λ. (22)

Construct the following problem

minimize
λ∈<,α≥0

Z(λ, α, y), (23)

and denote its optimal value by v∗(y). Then clearly, Pu = v∗(κ). Suppose we have computed the

value of κ. We only need to solve (23) for y = κ. It follows from Proposition 2 that for any given

y ∈ [0, 1], Z(λ, α, y) is convex in (λ, α), and thus (23) is a convex optimization problem. Because

the function Ψ(s, α) is defined by (14) which is in the form of a supremum, we can obtain the dual

of (14) and build the corresponding strong duality. This yields the following corollary.

Corollary 1. Suppose that the intersection of the relative interiors of the effective domains of φi

is nonempty. Then

Ψ(s, α) = inf
µ1≥0,µ2≤0,

∑m
i=1 si−µ1−µ2=s

{
m∑

i=1

αiφ
∗
i

(
si

αi

)
− aµ1 − bµ2

}
.

Corollary 1 essentially generalizes Corollary 4 of Ben-Tal et al. (2013). For completeness, we

include the proof of the corollary in Appendix. From Corollary 1, we immediately have that, with

the assumption in Corollary 1 satisfied, (23) is equivalent to the following problem:

minimize y

[
m∑

i=1

αiφ
∗
i

(
si

αi

)
− aµ1 − bµ2

]
+ (1− y)

[
m∑

i=1

αiφ
∗
i

(
ti
αi

)
− aν1 − bν2

]
+

m∑

i=1

αiηi − λ

subject to
m∑

i=1

si − µ1 − µ2 = 1 + λ,
m∑

i=1

ti − ν1 − ν2 = λ,

λ ∈ <, α ≥ 0, µ1 ≥ 0, µ2 ≤ 0, ν1 ≥ 0, ν2 ≤ 0, si ∈ <, ti ∈ <, i = 1, 2, · · · ,m.

For each given y, the problem above is a convex optimization problem. With the conjugates φ∗i
given explicitly, it can be solved via conventional convex optimization software packages.

Note that for the ambiguity set Lφ defined in Equation (17), Problem (23) can be further

simplified as

minimize
λ∈<,α≥0

yαφ∗
(

1 + λ

α

)
+ (1− y)αφ∗

(
λ

α

)
+ αη − λ. (24)

Problem (24) has a similar structure as Problem (13) of Ben-Tal et al. (2013). Similarly, it can be

reformulated into simpler optimization problems such as conic quadratic program (CQP) and linear
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program (LP) for various φ-divergences, including KL divergence, χ2-distance, Neyman χ2-distance,

Hellinger distance, χ-distance of order θ > 1, and Cressie-Read divergence. For illustration, we

consider the examples of KL divergence and χ2-distance.

Example 4.1. For KL divergence, it is easily shown that (24) can be reformulated as

minimize
1
2
yz1 +

1
2
(1− y)z2 + αη − λ

subject to α exp
{

1 + λ

α

}
≤ z1, α exp

{
λ

α

}
≤ z2, λ ∈ <, α ≥ 0.

This is a simple perspective-of-exponential program and thus can be solved easily.

Example 4.2. For χ2-distance, based on the sum-of-quadratic-over-linear program reformulation

in Section 3.1.1, we can further convert (24) equivalently to the following

minimize
1
4
yiµ3 +

1
4
(1− yi)µ4 + α(η − 1)− λ

subject to

√
µ2

1 +
1
4

(α− µ3)
2 ≤ 1

2
(α + µ3) ,

√
µ2

2 +
1
4

(α− µ4)
2 ≤ 1

2
(α + µ4) ,

µ1 ≥ 1 + λ + 2α, µ2 ≥ λ + 2α, α ≥ 0, µ1 ≥ 0, µ2 ≥ 0, λ, µ3, µ4 ∈ <.

This is a simple conic program and thus can be solved readily.

As mentioned, Equation (20) shows that we can use a similar procedure to compute Pl. The

procedure requires the input value PrP0 {Ac(ξ)}. Note that PrP0 {Ac(ξ)} = 1 − κ. We have

supP∈P PrP {Ac(ξ)} = v∗(1− κ). Therefore, we can also compute Pl by only simulating κ (which

is done for Pu). We summarize the result in the following theorem.

Theorem 4. Suppose that the ambiguity set is L. Then Pl = 1− v∗(1− κ).

5 Value-at-Risk Performance Measure

We now turn our discussion to VaR. The distribution mis-specification issue for VaR has received

much attention in real applications. In insurance and actuarial literature, people have suggested

considering the worst-case VaR and using it to guide the reservation of capital to protect against

both risks and uncertainties, see, for instance, Wang et al. (2013) and references therein.

Suppose H(ξ) is the random loss. To ease the analysis, we assume H(ξ) is a continuous random

variable. Because VaR is a risk measure that is used to quantify the undesired risk, decision makers

usually only concern the worst case, i.e., the maximal VaR. But for completeness, we still consider

the two quantities, the minimal VaR and the maximal VaR

Vl := inf
P∈P

VaR1−β,P (H(ξ)) and Vu := sup
P∈P

VaR1−β,P (H(ξ)).
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Consider the maximum and the corresponding optimization problem

maximize
P∈P

VaR1−β,P (H(ξ)). (25)

From the definition of VaR, it is not difficult to verify Problem (25) can be rewritten as

minimize
t∈<

t (26)

subject to PrP {H(ξ)− t ≤ 0} ≥ 1− β, ∀ P ∈ P.

The constraint in (26) is equivalent to

sup
P∈P

EP

[
1{H(ξ)−t>0}

] ≤ β.

Suppose that we consider the ambiguity set L defined in Equation (8). Then, the constraint is

equivalent to

sup
L∈L

EP0

[
1{H(ξ)−t>0}L

] ≤ β. (27)

Let κ(t) = PrP0 {H(ξ)− t > 0}. From Theorem 3 we have that (27) is equivalent to

inf
λ∈<,α≥0

Z(λ, α, κ(t)) ≤ β (28)

where Z(·, ·, ·) is defined in Equation (22). Note that infλ∈<,α≥0 Z(λ, α, κ(t)) is nondecreasing in

κ(t). Thus (28) is equivalent to κ(t) ≤ βl for some βl. We summarize the results in the following

theorem, with the complete proof in Appendix.

Theorem 5. Suppose that the ambiguity set is L. Then

Vu = VaR1−βl,P0(H(ξ)) (29)

with

βl = sup
{

y : inf
λ∈<,α≥0

Z(λ, α, y) ≤ β

}
. (30)

Similarly, we have the following theorem for Vl and the proof is included in Appendix.

Theorem 6. Suppose that the ambiguity set is L. Then

Vl = VaRβu,P0(H(ξ)), (31)

where

βu = inf
{

y : inf
λ∈<,α≥0

Z(λ, α, y) ≥ 1− β

}
. (32)

Theorems 5 and 6 show that the maximal and minimal VaRs are also VaRs with different

confidence levels. It is not difficult to verify that βl ≤ β and βu ≤ 1 − β. This shows that, to

compensate the distributional robustness in the specification of the VaRs, a certain amount of

allowed error probability needs to be given up. From Theorems 5 and 6, we see that risk and

ambiguity are interrelated in an interesting way.
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5.1 Computation of New Confidence Level

To simulate the (1− βl)-VaR and βu-VaR, we still need to obtain the new confidence levels βl and

βu, which are defined by (30) and (32) respectively. Below we discuss how to search βl and βu

numerically. Because the two quantities are defined by the same optimization structure, we only

consider βl.

Note that βl ∈ [0, 1]. Therefore, we only need to seek βl from [0, 1] and βl is equal to the optimal

value of the following optimization problem:

maximize
0≤y≤1,λ∈<,α≥0

y subject to Z(λ, α, y) ≤ β, (33)

where Z(·, ·, ·) is defined by (22). From Section 4, we know that, for any given y ∈ [0, 1], Z(λ, α, y)

is convex in (λ, α). Furthermore, from Proposition 2, it is not difficult to show that Z(λ, α, y)

is nondecreasing in y. The nice structures motivate us to design the following Bisection Search

procedure to solve Problem (33).

Bisection Search

Step 0. Set i = 0. Set yl := 0 and yu := 1.

Step i. Set yi = yl+yu

2 and solve the following problem to obtain its optimal value v:

minimize
λ∈<,α≥0

Z(λ, α, yi).

If v ≤ β, update yl =: yi, otherwise, update yu =: yi. Set i = i + 1.

For the Bisection Search procedure, we have the following convergence result whose proof is straight-

forward and thus is omitted.

Proposition 3. When the Bisection Search procedure is used to solve Problem (33), yi → βl as

i →∞ and for any ε, |yi − βl| ≤ ε whenever i > − log2 ε.

Proposition 3 shows that the sequence {yi} generated by the Bisection Search procedure con-

verges to the optimal value of Problem (33), i.e., βl, and the rate of convergence is in an exponential

order. To implement the Bisection Search procedure, we need to solve a sequence of convex opti-

mization problems in Step i. Because the problem in Step i is an instance of Problem (23), it may

be solved readily.

6 Construction of Ambiguity Set

We have discussed the computation methods for RS. The remaining question is how to specify the

ambiguity set. In this paper we only discuss an objective approach, that is, we specify the size of
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ambiguity set based on the data information to obtain a confidence region. Suppose that an i.i.d.

sample of ξ, denoted by {ξ1, . . . , ξn}, from its true distribution is available. We focus on Lφ which

is most natural for decision makers. Even though φ-divergence is used widely, setting Lφ based on

a sample of observations is not trivial. It is a difficult statistical problem.

We first consider the case where ξ is a discrete random variable (or vector) that has a known

finite set of support {x1, x2, . . . , xs}. Ben-Tal et al. (2013) studied this case and built an ap-

proximate confidence region for the probability mass function p∗ based on asymptotic results of

φ-divergence. Basically, given the sample {ξ1, . . . , ξn}, one can estimate p∗(xi) by just counting how

many observations in the sample that equals xi and dividing it by n for any i = 1, . . . , s. Denote

the estimated probability mass function as p̂. Then, Ben-Tal et al. (2013) showed that

2n

φ′′(1)
Dφ(p∗, p̂) ⇒ χ2

s−1, as n →∞, (34)

where χ2
s−1 is a χ2-distribution with s−1 degrees of freedom. Then, an approximate 1−α confidence

region for p∗ is {
p ∈ <s : p ≥ 0,

s∑

i=1

pi = 1, Dφ(p, p̂) ≤ η

}
,

where η = φ′′(1)
2n χ2

s−1,1−α. The result shows that the φ-divergence from the true distribution to the

estimated distribution follows an asymptotic chi-square distribution. The rate of convergence is of

order 1/n, which is consistent with the conventional rate of 1/
√

n, because φ-divergence is a square

of the conventional distance. We can then use p̂ as the nominal distribution P0 with the same

φ-divergence and same η in the ambiguity set Lφ. Then, Lφ is an approximate 1 − α confidence

region of the true distribution, expressed in the LR function. This case, where the distribution

of ξ is supported on s scenarios, is called the base case by Ben-Tal et al. (2013). In their paper,

they also considered more general cases and discussed how to improve the approximate confidence

region using correction parameters.

When ξ is a continuous random variable (or vector), constructing an ambiguity set Lφ that is

similar to the discrete case turns out to be quite difficult. To solve the problem, we propose to

use a parametric distribution as a bridge. Suppose that the unknown true density function of ξ

is pθ∗ , which is known to be a member of a parametric family, denoted as {pθ}θ∈Θ. Suppose we

have a set of i.i.d. sample {ξ1, ξ2, · · · , ξn} from ξ. Then, based on the sample, we can obtain the

maximum likelihood estimator (MLE) of θ∗, denoted as θ̂. We make some assumptions in Appendix

A.7. Based on Theorem 9.1 of Pardo (2006), we have the following proposition. The proof of the

proposition follows from the proof of Theorem 9.1 of Pardo (2006) with some modifications. We

put it in Appendix.

Proposition 4. Suppose that Assumptions (i1)-(i5) and (ii1)-(ii2) in Appendix A.7 are satisfied.
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Then
2n

φ′′(1)
Dφ(pθ∗ , pθ̂) ⇒ χ2

d, as n →∞,

where χ2
d denotes the chi-square distribution with degree of freedom d and d is the degree of freedom

of θ (i.e., the number of free elements in the vector θ).

Note that the result in (34) for the discrete case may be viewed as a special case of Proposition

4, because the discrete distribution may be viewed as a parametric distribution with s − 1 free

parameters (i.e., p∗(x1), . . . , p∗(xs−1)).

Based on Proposition 4, given n observations of ξ, an approximate 1− α confidence region for

pθ∗ is

CRpθ
:=

{
pθ : θ ∈ Θ, Dφ(pθ, pθ̂) ≤ η

}
,

where η = φ′′(1)
2n χ2

d,1−α. However, CRpθ
is not in the form of Lφ as the distributions in CRpθ

are

restricted to the parametric family. Replacing pθ with a general density p ∈ D in CRpθ
, we obtain

the following ambiguity set

CRp :=
{
p : p ∈ D, Dφ(p, pθ̂) ≤ η

}
,

which may be converted to Lφ by setting pθ̂ as the nominal distribution. Because CRpθ
is a subset

of CRp, CRp is also an approximate 1−α confidence region for pθ∗ . We use CRp in the RS analysis.

It is easy to see that, when using CRp to replace CRpθ
, we convexify the ambiguity set and make the

RS problem tractable. The cost is that using the larger ambiguity set CRp in our RS analysis may

yield a conservative lower bound and upper bound for the real performance measure. Fortunately,

the set CRp still shrinks in the order of 1/n and the size of CRp may be controlled by the sample

size n.

When there is no data for specifying the ambiguity set, we can absorb some expert opinion to

the ambiguity set. For instance, suppose that we believe the random vector ξ follows a parametric

density pθ∗ and the nominal estimate (or the best guess) of θ∗ is θ0. If it is believed that θ∗ ∈ Θ,

then we may let η = supθ∈Θ Dφ(pθ, pθ0) and construct the following ambiguity set

CRp := {p : p ∈ D, Dφ(p, pθ0) ≤ η} ,

which includes all pθ with θ ∈ Θ. This implies pθ∗ ∈ CRp. We can then covert CRp to the ambiguity

set Lφ. In such approach, the problem becomes whether η can be computed efficiently. Because

the φ-divergence may be derived analytically for many parametric distributions, computing η then

becomes a deterministic optimization problem that may be easy to solve.

7 Numerical Illustrations

In this section, we consider two test examples from health care management and financial risk man-

agement. We conduct numerical experiments to illustrate the implementation of our RS approach.
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7.1 Response of Emergency Medical Service

Consider a simplified model on emergency medical service (EMS) operation. Suppose the emergency

call may occur at any point ξ = (ξ1, ξ2) of a geographic region (the whole plane, measured by km)

with a joint normal distribution P := N(µ,Σ). Suppose there are five EMS stations located

at O(0, 0), A(12, 0), B(0, 12), C(−12, 0), and D(0,−12). Once a call arrives, an ambulance in the

nearest station will be equipped to serve it. Let (ζ1(ξ), ζ2(ξ)) denote the location of the response

station for ξ. For simplicity, assume the speed of any ambulance is a constant v = 40km/h. Then,

the response time for ξ is

H(ξ) = v−1
√

(ξ1 − ζ1(ξ))
2 + (ξ2 − ζ2(ξ))

2.

We are primarily interested in two measures, the expected response time EP [H(ξ)] and the percent-

age of late calls. The percentage of late calls for EMS is often concerned in health care management

practice. A call is taken to be late if the response time exceeds a threshold, see, e.g., Maxwell et

al. (2014). In this example, we consider the nine minutes threshold. We are interested in the late

percentage

PrP {H(ξ) > 9/60} .

While it is not impossible to derive analytical expressions for the expectation and the probability,

we estimate them via simulation.

Assume the true distribution is P = N(0, 10×I) where 0 is the zero vector and I is the identity

matrix. Because our random vector follows a 2 dimensional multivariate normal distribution, the

degree of freedom of the chi-square distribution is d = 5. In the experiment, we mainly illustrate

the implementation of RS, so for simplicity we assume the nominal distribution P0 is just the true

distribution P . We consider different confidence level α and sample size n and conduct RS with

ambiguity set Lφ where η = φ′′(1)
2n χ2

d,1−α.

We first consider the expected response time. The nominal expected response time under P0

is estimated to be 0.0928 hours (5.5680 minutes). We use the KL divergence and χ2-distance to

construct the ambiguity set. As shown in Section 3.1.1, for both KL divergence and χ2-distance, the

sample problem (19) can be reformulated as convex optimization problems which can be handled

efficiently by CVX. In the experiment, we use Matlab to call CVX to solve the problems. We

use a sample size 1000 in the SAA problem and simultaneously compute the maximal expectation

(denoted by Eu) and the minimal expectation (denoted by El). Table 2 reports the computational

results, which are averaged over five typical replications. From Table 2 we can see that input

uncertainty has a significant impact on the performance. On the other hand, when the sample

size n increases, the index of ambiguity η reduces, and the maximal expectation and minimal

expectation become closer and closer to the nominal value, supporting that the uncertainty in

output may be suppressed by reducing the input uncertainty.
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Table 2: Robust Simulation for Expected Response Time (Minutes)
α n η El Eu η El Eu

0.2 10 KL 0.3645 3.5183 7.7313 χ2- 0.7289 3.5286 7.7508
0.2 50 divergence 0.0729 4.6575 6.5736 distance 0.1458 4.6384 6.5802
0.2 100 0.0365 4.8638 6.2399 0.0729 4.8958 6.2681
0.1 10 0.4618 3.3133 8.0211 0.9236 3.2495 7.9148
0.1 50 0.0924 4.5013 6.6825 0.1847 4.5157 6.7004
0.1 100 0.0462 4.8546 6.3948 0.0924 4.8348 6.4215
0.05 10 0.5535 3.0000 8.1786 1.1070 3.0631 8.1027
0.05 50 0.1107 4.4389 6.8099 0.2214 4.3545 6.7262
0.05 100 0.0554 4.7075 6.4160 0.1107 4.7449 6.4355

We next consider the late percentage. The nominal late percentage under P0 is estimated to be

0.0912. Since the indicator function is bounded, we can use any divergences. In the experiment, we

consider KL divergence, χ2-distance, Neyman χ2-distance and Hellinger distance. As discussed in

Section 4, for both KL divergence and χ2-distance, Problem (24) can be reformulated as optimiza-

tion problems which can be solved easily. Also, it is easily shown that for Neyman χ2-distance and

Hellinger distance, (24) can be reformulated as conic quadratic programs, which can be solved read-

ily via CVX. We conduct RS of the probability measure using the approach developed in Section

4, and report the computational results for different values of α and n in Table 3.

Table 3: Robust Simulation for Late Percentage
α n divergence η Pl Pu divergence η Pl Pu

0.2 10 KL 0.3645 0.0000 0.4116 χ2-distance 0.7289 0.0000 0.3370
0.2 100 divergence 0.0365 0.0248 0.1780 0.0729 0.0135 0.1689
0.2 1000 0.0037 0.0675 0.1169 0.0073 0.0666 0.1158
0.1 10 0.4618 0.0000 0.4593 0.9236 0.0000 0.3679
0.1 100 0.0462 0.0184 0.1900 0.0924 0.0037 0.1787
0.1 1000 0.0046 0.0649 0.1200 0.0092 0.0636 0.1188
0.05 10 0.5535 0.0000 0.5006 1.1070 0.0000 0.3941
0.05 100 0.0554 0.0134 0.2004 0.1107 0.0000 0.1870
0.05 1000 0.0056 0.0623 0.1231 0.0111 0.0609 0.1215
0.2 10 Neyman 0.7289 0.0093 0.5178 Hellinger 0.1822 0.0000 0.4516
0.2 100 χ2-distance 0.0729 0.0390 0.1990 distance 0.0182 0.0292 0.1828
0.2 1000 0.0073 0.0695 0.1188 0.0018 0.0683 0.1171
0.1 10 0.9236 0.0076 0.5673 0.2309 0.0000 0.5067
0.1 100 0.0924 0.0352 0.2164 0.0231 0.0237 0.1962
0.1 1000 0.0092 0.0672 0.1227 0.0023 0.0655 0.1207
0.05 10 1.1070 0.0065 0.6054 0.2768 0.0000 0.5537
0.05 100 0.1107 0.0323 0.2315 0.0277 0.0195 0.2079
0.05 1000 0.0111 0.0652 0.1262 0.0028 0.0631 0.1239

From the table, we can see that the late percentage is quite sensitive to the input distribution,

reflecting the importance of the input uncertainty issue. Similar to the expectation, when the

sample size n increases, the maximal probability and minimal probability become closer and closer

to the nominal value. However, we require a relatively large sample size for the input data so that
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the output error is small enough. This further reflects the difficulty of input modeling.

7.2 Financial Risk Model

As a second example, we consider the VaR problem of a portfolio described in Hong et al. (2014b).

Suppose an investor holds k assets with random returns ξ = (ξ1, · · · , ξk)T where ξj is the return

of asset j. Suppose xj is the capital invested in asset j. Then the random loss of the portfolio is

H(ξ) = −xTξ where x = (x1, · · · , xk)T. We consider the VaR of the loss, VaR1−β,P (H(ξ)). Again,

we assume the return vector ξ follows a multivariate normal distribution P := N(µ,Σ). Under this

assumption, the VaR admits an analytical expression:

VaR1−β,P (H(ξ)) = −µTx + κ(β)
√

xTΣx with κ(β) = Φ−1(1− β), (35)

where Φ−1(·) is the inverse of the standard normal cumulative distribution function. Thus, given all

the parameters, the VaR can be computed directly via (35). In the experiment, we set k = 10, and

assume µ = (µ1, · · · , µk)T evenly spread between 0.04 and 0.50 and increase with i, the standard

deviation is µi +0.05 for all i = 1, · · · , k and the correlation between ξi and ξj is 0.35 for any i 6= j.

We also assume the nominal distribution is the same as P .

We consider two confidence levels β = 0.1, 0.05. For the nominal distribution N(µ,Σ)), it

can be computed via (35) that VaR0.9,P0(H(ξ)) = 0.0020 and VaR0.95,P0(H(ξ)) = 0.0725. The

values are used as benchmark in RS. We also use Lφ and consider the four φ-divergences as for

the probability performance measure in preceding example. Since k = 10, we have the degree of

freedom d = (k2 + 3k)/2 = 65. This shows the dimension of the distribution parameters is high,

suggesting that a data set with a large sample size may be required to model the input uncertainty.

The computational results for different combinations of α and n are summarized in Table 4. In

Table 4, the βl column computes the new confidence level and Vu is the maximal VaR, derived

via (35). From Table 4 we see again the significant impact of the input uncertainty on the output

performance. For the Neyman χ2-distance and Hellinger distance, there are zeros in the βl column,

for which the VaR should be +∞ (we left it as blank). The reason is that for any y > 0, (33) has

no feasible solution. Only when y = 0, (33) is feasible. This phenomenon is caused by the fact that

the effective domain of φ∗ is not <. Consequently, the feasible sets in Step i of Bisection Search are

different for the cases y = 0 and y > 0.

8 Conclusions

RS studied in this paper provides a new approach to analyzing input uncertainty. When the

ambiguity is modeled by LR, we show that the RS problems are quite tractable for three most

important performance measures: expectation, probability, and VaR. The study is just a start of

RS and, even under our framework, it is far from complete. For the RS approach being a practical
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Table 4: Robust Simulation for Value-at-rsik
α n divergence η βl Vu divergence η βl Vu

0.1 100 KL 0.3998 7.1560e-004 0.3724 χ2-distance 0.7997 0.0102 0.2035
0.1 1000 divergence 0.0400 0.0362 0.1020 β = 0.1 0.0800 0.0428 0.0870
0.1 10000 β = 0.1 0.0040 0.0753 0.0322 0.0080 0.0763 0.0309
0.05 100 0.4241 5.6044e-004 0.3860 0.8482 0.0097 0.2072
0.05 1000 0.0424 0.0349 0.1053 0.0848 0.0418 0.0891
0.05 10000 0.0043 0.0745 0.0333 0.0085 0.0756 0.0318
0.1 100 β = 0.05 0.3998 6.3555e-006 0.6010 β = 0.05 0.7997 0.0028 0.2912
0.1 1000 0.0400 0.0103 0.2028 0.0800 0.0153 0.1731
0.1 10000 0.0040 0.0329 0.1104 0.0080 0.0338 0.1081
0.05 100 0.4241 3.9090e-006 0.6214 0.8482 0.0027 0.2935
0.05 1000 0.0424 0.0097 0.2072 0.0848 0.0148 0.1756
0.05 10000 0.0043 0.0323 0.1120 0.0085 0.0334 0.1091
0.1 100 Neyman 0.7997 0 Hellinger 0.1999 0
0.1 1000 χ2-distance 0.0800 0.0151 0.1741 distance 0.0200 0.0321 0.1126
0.1 10000 β = 0.1 0.0080 0.0732 0.0352 β = 0.1 0.0020 0.0748 0.0329
0.05 100 0.8482 0 0.2120 0
0.05 1000 0.0848 0.0126 0.1878 0.0212 0.0307 0.1164
0.05 10000 0.0085 0.0723 0.0364 0.0021 0.0742 0.0338
0.1 100 β = 0.05 0.7997 0 β = 0.05 0.1999 0
0.1 1000 0.0800 0 0.0200 0.0070 0.2304
0.1 10000 0.0080 0.0305 0.1170 0.0020 0.0323 0.1120
0.05 100 0.8482 0 0.2120 0
0.05 1000 0.0848 0 0.0212 0.0064 0.2366
0.05 10000 0.0085 0.0299 0.1187 0.0021 0.0319 0.1131

methodology, a number of issues still need to be addressed. An important problem/issue is how to

determine the ambiguity set based on the data available. We have discussed only the parametric

case. For the more interesting and more practical nonparametric case, however, the problem is still

open to us. If ideally, we can construct a confidence region for the unknown true distribution using a

φ-divergence, then the RS approach can guarantee an exact confidence interval corresponding to the

confidence region for the true performance measure. To resolve the problem, asymptotic statistical

properties for the φ-divergence need to be built. However, these are significantly understudied in

the literature and we will consider them in our future studies. Besides the specification of the

ambiguity size, an important problem is the selection of φ-divergence. This is also a research

question that needs answer. Another important problem is how to extend the RS approach to the

cases of dynamic simulations, where multiple independent observations of the same uncertain input

distributions are necessary in the simulation study, and still maintain the mathematical tractability.

We are certainly interested in this problem and will study it in the future. Finally, in this paper,

we have focused on the input error but have not taken into consideration the simulation error. In

contrast to the input error, the simulation error can be controlled within any precision by setting

the simulation effort. However, when implementing the RS approach in practice, the simulation

error can not be ignored completely. Quantifying the simulation error in our RS approach will be
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a consecutive research problem.
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A Appendix

A.1 Proof of Theorem 1

Proof. To prove Theorem 1 and Proposition 1, we take a similar approach as that for proving

Theorem 4.2 in Ben-Tal and Teboulle (2007). The general convex duality theory implies that the

strong duality between (11) and (12) holds if the following constraint qualification holds (see, e.g.,

Corollary 4.8 of Borwein and Lewis 1992): ∃ L ∈ L1 such that EP0 [L] = 1, α < L < β a.e. Note

that we assume α < 1 < β. By setting L = 1, this constraint qualification holds. This concludes

the proof.

A.2 Proof of Proposition 1

Proof. Proposition 1 follows from Theorem 4.1 of Ben-Tal and Teboulle (2007) and the proof of

Theorem 4.2 of Ben-Tal and Teboulle (2007). The difference is the integrand. In our problem, the

integrand is also in normal convex. This justifies the result.

A.3 Proof of Proposition 2

Proof. For any fixed t, st − ∑m
i=1 αiφi (t) is linear, and thus convex, in (s, α). It is well known

that the supremum preserves convexity. Thus Ψ(s, α) is convex in (s, α). Furthermore, t ∈ L(a, b)

is always non-negative. Therefore, Ψ(s, α) is non-decreasing in s for any given α ≥ 0. Note that

1 ∈ L(a, b) and φi(1) = 0. We have Ψ(s, α) ≥ s−∑m
i=1 αiφi (1) = s.
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A.4 Proof of Corollary 1

Proof. We compute Ψ(s, α) using Lagrangian duality and properties of the conjugate:

Ψ(s, α) = sup
t≥0

inf
µ1≥0,µ2≤0

{
st−

m∑

i=1

αiφi (t) + µ1 (t− a) + µ2 (t− b)

}

= inf
µ1≥0,µ2≤0

sup
t≥0

{
(s + µ1 + µ2) t−

m∑

i=1

αiφi (t)− aµ1 − bµ2

}

= inf
µ1≥0,µ2≤0

{(
m∑

i=1

αiφi

)∗
(s + µ1 + µ2)− aµ1 − bµ2

}

= inf
µ1≥0,µ2≤0

inf∑m
i=1 si=s+µ1+µ2

{
m∑

i=1

αiφ
∗
i

(
si

αi

)
− aµ1 − bµ2

}
,

where the second equality follows from strong duality, the third one follows from the definition of

the conjugate, and the last one follows from Proposition 1 of Ben-Tal et al. (2013) and the property

that (αφ)∗ (s) = αφ∗(s/α) (Ben-Tal et al. 2013). This concludes the proof.

A.5 Proof of Theorem 5

Proof. We show (28) is equivalent to

κ(t) ≤ βl, (36)

where βl is defined by (30). From the definition of βl, any κ(t) satisfying (28) satisfies (36).

Thus it suffices to show the opposite direction. Note that infλ∈<,α≥0 Z(λ, α, κ) is a concave and

nondecreasing in κ. Furthermore, it equals 0 when κ = 0 and equals 1 when κ = 0. Therefore,

infλ∈<,α≥0 Z(λ, α, κ) is continuous function of κ in (0, 1]. This shows infλ∈<,α≥0 Z(λ, α, κ(t)) ≤ β

when κ(t) = βl. Therefore, any κ(t) satisfying (36) satisfies (28).

The equivalence between (28) and (36) implies that Problem (26) can be transformed as

minimize
t∈<

t

subject to Pr∼P0 {H(ξ)− t ≤ 0} ≥ 1− βl,

whose optimal value is (29) from the definition of the (1− βl)-VaR.

A.6 Proof of Theorem 6

Proof. The minimum Vl corresponds to the following optimization

minimize
P∈P

VaR1−β,P (H(ξ)). (37)

From the definition of VaR, it is not difficult to verify Problem (37) can be rewritten as

minimize
t∈<

t (38)

subject to Pr∼P {H(ξ)− t ≤ 0} ≥ 1− β, for some P ∈ P.

28



The constraint in (38) is equivalent to

maximize
P∈P

EP

[
1{H(ξ)−t≤0}

] ≥ 1− β. (39)

Let κ(t) = Pr∼P0 {H(ξ)− t ≤ 0} and consider only the ambiguity set L defined in Equation (8).

From Theorem 3 we have that (39) is equivalent to

inf
λ∈<,α≥0

Z(λ, α, κ(t)) ≥ 1− β (40)

where Z(·, ·, ·) is defined by Equation (22). We show (40) is equivalent to

κ(t) ≥ βu (41)

if βu > 0, and is equivalent to

κ(t) > βu (42)

if βu = 0, where βu is defined by (32).

Note that infλ∈<,α≥0 Z(λ, α, κ) is a concave and nondecreasing function of κ on [0, 1]. It is

strictly increasing before it reaches its maximal value 1. The only possible non-continuous point is

κ = 0. Therefore, when βu > 0, infλ∈<,α≥0 Z(λ, α, βu) = 1−β. Therefore, (40) is equivalent to (41).

When βu = 0, we have infλ∈<,α≥0 Z(λ, α, κ) > 1 − β for all κ > 0 and infλ∈<,α≥0 Z(λ, α, 0) = 0.

Thus (40) is equivalent to (42). Finally, since H is a continuous random variable, both cases

indicates that the optimal value of Problem (38) is equal to that of

minimize
t∈<

t

subject to κ(t) ≥ βu,

whose optimal value is (31) from the definition of the βu-VaR.

A.7 Assumptions for Proposition 4

Let (Ξ,FΞ, Pθ)θ∈Θ be the statistical space and µ be the Lebesgue measure. We make the following

assumptions.

(i1) For all θ1 6= θ2 ∈ Θ ⊂ <d,

µ ({z ∈ Ξ : pθ1(z) 6= pθ2(z)}) > 0.

(i2) The set SΞ = {z ∈ Ξ : pθ(z) > 0} is independent of θ.

(i3) The first, second and third partial derivatives

∂pθ(z)
∂θi

,
∂2pθ(z)
∂θi∂θj

,
∂3pθ(z)

∂θi∂θj∂θk
, i, j, k = 1, · · · , d

exist everywhere.
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(i4) The first, second and third partial derivatives of pθ(z) with respect to θ are absolutely bounded

by functions α, β and γ with finite integrals
∫

Ξ
α(z)dµ(z) < ∞,

∫

Ξ
β(z)dµ(z) < ∞,

∫

Ξ
γ(z)dµ(z) < ∞.

(i5) For each θ ∈ Θ, the Fisher information matrix

IF (θ) =
(∫

Ξ

∂ log pθ(z)
∂θi

∂ log pθ(z)
∂θj

pθ(z)dµ(z)
)

i,j=1,··· ,d

exists and is positive definite, with elements continuous in the variable θ.

(ii1) The function φ is twice continuously differentiable, with φ′′(1) > 0.

(ii2) For each θ0 ∈ Θ there exists an open neighborhood N(θ0) such that for all θ ∈ N(θ0) and

1 ≤ i, j ≤ d it holds:

∂

∂θi
Dφ(pθ, pθ0) = EP0

[
∂

∂θi
φ

(
pθ(ξ)
pθ0(ξ)

)]
,

∂2

∂θi∂θj
Dφ(pθ, pθ0) = EP0

[
∂2

∂θi∂θj
φ

(
pθ(ξ)
pθ0(ξ)

)]
,

and these expressions are continuous on N(θ0).

A.8 Proof Of Proposition 4

Proof. To build the asymptotics for Dφ(pθ∗ , pθ̂), we construct the function ϕ(t) := tφ(t−1). It

can be verified that ϕ is also a divergence function. Moreover, φ
′′
(1) = ϕ

′′
(1) and Dφ(pθ∗ , pθ̂) =

Dϕ(pθ̂, pθ∗). Thus it suffices to build asymptotics for Dϕ(pθ̂, pθ∗).

To express the divergence as a function of the parameter vectors, we use Dϕ(θ, θ∗) to denote

Dϕ(pθ, pθ∗). Note that Dϕ(θ, θ∗) is a function of θ. We can take a second order Taylor expansion

for Dϕ(θ, θ∗) at θ∗, evaluated at θ = θ̂. Following the proof (Pages 411-421) of Pardo (2006), we

can obtain that
2n

ϕ′′(1)
Dϕ(θ̂, θ∗) ⇒ χ2

d.

Note that in the whole deduction, we shall interpret the integral as a multivariate integral. The

proof is finished by noting Dφ(pθ∗ , pθ̂) = Dϕ(pθ̂, pθ∗).
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