

«Production Scheduling Management»

1. Course Description

Scheduling deals with the allocation of scarce resources to tasks over time. It is a decision-making process with the goal of optimizing one or more objectives.

The resources and tasks in an organization can take many forms. The resources may be machines in a workshop, runways at an airport, crews at a construction site, processing units in a computing environment, and so on. The tasks may be operations in a production process, take-offs and landings at an airport, stages in a construction project, executions of computer programs, and so on. Each task may have a certain priority level, an earliest possible starting time, and a due date. The objective may be the minimization of the completion time of the last task, and another may be the minimization of the number of tasks completed after their respective due dates.

In the current competitive environment of manufacturing and service industries, scheduling has become a necessity for survival in the marketplace. Companies have to meet shipping dates that have been committed to customers, as failure to do so may result in a significant loss of goodwill.

2. Course Objectives and Requirements

1. Objective: The purpose of this course is to teach the theory of scheduling. This part deals with the detailed scheduling of jobs. Given a collection of jobs to be processed in a certain machine environment, the problem is to sequence the jobs, subject to given constraints, in such a way that one or more performance criteria are optimized. The scheduler may have to deal with various forms of uncertainties, such as random job processing times, machines subject to breakdown, rush orders, and so on. One important thing is to equip the students with the basic knowledge to learn and further study some specific scheduling problems.

2. Requirement: Prerequisite knowledge for this course is an elementary course in Operations Research. Students need to complete the homework and a final project on time.

3. Course Arrangement

Unit 1	Topics		
	Preliminaries		
Session	Introduction to scheduling		
1-2	Machine environment		
(4 hours)	Processing characteristics and constraints		
	Objective functions		
	Classes of scheduling		
Group	What are the Characteristics of Scheduling?		
work			
Required Readings	Chapter 2 in book of <scheduling: (second<="" algorithms,="" and="" systems="" td="" theory,=""></scheduling:>		
ixeaunigs	Edition)>		
	SAP's Advanced Planner and Optimizer(APO)		

Unit 2	Topics
	Single Machine Model
Session	The total weighted completion time
3-4	The maximum lateness
(4 hours)	The number of tardy jobs
	The total tardiness
	The total weighted tardiness
Group	What are the difficult objectives in single machine model?
work	
Required Readings	Chapter 3, in book of <scheduling: (second<="" algorithms,="" and="" systems="" th="" theory,=""></scheduling:>
Readings	Edition)>
	IBM's independent agent architecture

Unit 3		Topics		
		Computational Complexity		
Session	•	Decision problem v.s. Optimization problem		
5-6	•	Class of P		
(4 hours)	•	Class of NP		
	•	NP-Complete v.s. NP-hard		

Group	How to show a problem is NP-hard?						
work							
Required Readings	Book of <computers a="" and="" guide="" intractability:="" of<="" td="" the="" theory="" to=""></computers>						
	NP-Completeness>						
	Travelling Salesman Problem						

Unit 4	Topics		
	Parallel Machine Model		
Session	The makespan without preemptions		
7-8	The makespan with preemptions		
(4 hours)	The total completion time without preemptions		
	The total completion time with preemptions		
Group	How to apply the parallel machine model in practice?		
work			
Required Readings	Chapter 5, in book of <scheduling: (second<="" algorithms,="" and="" systems="" td="" theory,=""></scheduling:>		
ixeaunigs	Edition)>		
	i2's tradematrix production scheduler		

Unit 5	Topics		
	Shop Machine Model		
Session	Flow shop		
9	Job shop		
(2 hours)	Open shop		
	Heuristics		
	Branch and bound algorithm		
Group	How to apply approximation algorithms in shop model?		
work			
Required Readings	Chapter 6-8, in book of <scheduling: (second<="" algorithms,="" and="" systems="" td="" theory,=""></scheduling:>		
reaungs	Edition)>		
	An implementation of cybertec's cyberplan		

4. Teaching Methods

Lectures, Discussions, Case Analysis, etc.

5. Learning Outcomes

Category	Learning Outcomes
	1. Basic framework and notation
	2. Basic concept in complexity
	3. Complexity hierarchy in scheduling
Knowledge	4. Analysis method: adjacent pairwise interchange
Ŭ	5. Analysis method: the smallest counterexample
Learned	6. Johnson algorithm
	7. Dynamic programming in scheduling
	8. Heuristic methods
	9. Branch and bound algorithm
	1. Modeling
Intellectual	2. Searching related references
abilities	3. Application of heuristic methods
	4. Design of dynamic programming
Improved	5. Design of branch and bound algorithm
	6. Analysis of approximation algorithms
	1. Cautious attitude in work
	2. Creative thinking
Practical	3. Application-oriented research
skills	4. Sustainable study
improved	5. Communication and cooperation
	6. Oral presentation
	7. Team working
Personal	To develop critical thanking
competences	
and	
characters	
Cultivated	

6. Performance Evaluation: Means & Ratio

Evaluation Ratio Link with learning outcomes expected

Means	(%)	
Class	10	All Category
Participation		
Home work	10	All Category
Group Work	10	All Category
Final	70	All Category
Assignment		

Requirements of Individual Final Assignment

- 1. Based on their interest, the students are free to choose a topic of scheduling to research. They must use their creation to establish the model on the basis of application.
- 2. They must use searching engine to obtain literature, such as google, elsever and sciencedirect database.
- 3. Within two weeks, the students should submit the final assignment, which should give the comment on the advantages and disadvantages on the mathematical models and solution approaches, as well as improvement suggestions.

Policy on attendance and participation:

Since most class meetings will include the discussion, students are expected to attend and participate in all classes (if you miss some session, you will get points off according to your handbook).

Feedback:

<u>Any feedback</u>, whether verbally or electronically, on anything that concerns you <u>is</u> <u>always appreciated</u>.

Preparation:

Students are requested to read all the cases marked with MUST PRIOR to the first classes.

7. Textbook, References and Reading Materials

Textbook

[1] Michael Pinedo, *Scheduling: Theory, Algorithms, and Systems (Second Edition)*, Prentice-Hall, Inc, 2005.

[2] Peter Brucker, *Scheduling Algorithms (Fourth Edition)*, Springer, 2004.

[3] Michael R. Garey and David S. Johnson, *Computers and Intractability: A guide to the Theory of NP-Completeness*, Freeman & Co., San Francisco, 1979.

Online resources

[1] Library of Tongji University : http://www.lib.tongji.edu.cn/

- [2] Sciencedirect : http://www.sciencedirect.com/
- [3] Google : http://www.google.com/
- [4] European Journal of Operational Research
- [5] Operations Research
- [6] Management Science

8. Cases

[1] Michael Pinedo, Scheduling: Theory, Algorithms, and Systems (Second Edition), Prentice-Hall, Inc, 2005.

9. Assignment Requirements

The criteria of assignment evaluation (100 points)

Assessment Criteria Grid	Max.	Points
	points	Attribute
		d
Comprehension of key issues:	20%	
Understanding of concepts treated in class		
 Ability to apply concepts to new context/s 		
Proper use of subject matter vocabulary		
Addressed fully the assignment requirements		
Analysis:		
Display of critical thinking relative to subject matter		
 Application of key models and concepts to the analysis 		
Ability to apply concepts/models from other disciplines to the analysis		
Structure & presentation:	20%	
Well-structured ideas and information		

Clarity of presentation		
 Professional layout – tables, figures, images, headings, hierarchy of 		
information		
Use of transitions and interim conclusions		
Conclusions & recommendations:	20%	
Logical continuation of reasoning/ideas/analysis developed in assignment		
Concision and relevancy to the analysis		
Relevance to the analysis		
References & citation:	10%	
Citations within paper		
Proper format of citation and no acts of plagiarism (intentional or		
unintentional)		
Reference/Bibliography section		
Depth and breadth of sources		
Other:	10%	
Elements of assessment at Professor's discretion relative to the discipline		
Creativity and originality of ideas/approach/analysis/findings		
 Demonstrated general attainment of module learning objectives 		
TOTAL	100%	

Appendices:

- 1. The course SLIDES
- 2. Teaching material (such as reading materials, the articles)